Skip navigation.
Home

New characterisation method of electrical and electronic equipment wastes (WEEE)

TitleNew characterisation method of electrical and electronic equipment wastes (WEEE)
Publication TypeJournal Article
Year of Publication2013
AuthorsMenad N, Guignot S, van Houwelingen JA
Journal TitleWaste Management
Volume33
Pages706 - 713
ISSN0956-053X
KeywordsFlow sheet
AbstractInnovative separation and beneficiation techniques of various materials encountered in electrical and electronic equipment wastes (WEEE) is a major improvement for its recycling. Mechanical separation-oriented characterisation of WEEE was conducted in an attempt to evaluate the amenability of mechanical separation processes. Properties such as liberation degree of fractions (plastics, metals ferrous and non-ferrous), which are essential for mechanical separation, are analysed by means of a grain counting approach. Two different samples from different recycling industries were characterised in this work. The first sample is a heterogeneous material containing different types of plastics, metals (ferrous and non-ferrous), printed circuit board (PCB), rubber and wood. The second sample contains a mixture of mainly plastics. It is found for the first sample that all aluminium particles are free (100%) in all investigated size fractions. Between 92% and 95% of plastics are present as free particles; however, 67% in average of ferromagnetic particles are liberated. It can be observed that only 42% of ferromagnetic particles are free in the size fraction larger than 20 mm. Particle shapes were also quantified manually particle by particle. The results show that the particle shapes as a result of shredding, turn out to be heterogeneous, thereby complicating mechanical separation processes. In addition, the separability of various materials was ascertained by a sink–float analysis and eddy current separation. The second sample was separated by automatic sensor sorting in four different products: ABS, PC–ABS, PS and rest product. The fractions were characterised by using the methodology described in this paper. The results show that the grade and liberation degree of the plastic products ABS, PC–ABS and PS are close to 100%. Sink–float separation and infrared plastic identification equipment confirms the high plastic quality. On the basis of these findings, a global separation flow sheet is proposed to improve the plastic separation of WEEE.
URLhttp://www.sciencedirect.com/science/article/pii/S0956053X1200150X
DOI10.1016/j.wasman.2012.04.007
Login or register to post comments